If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+1.55t-4.9=0
a = 4.9; b = 1.55; c = -4.9;
Δ = b2-4ac
Δ = 1.552-4·4.9·(-4.9)
Δ = 98.4425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.55)-\sqrt{98.4425}}{2*4.9}=\frac{-1.55-\sqrt{98.4425}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.55)+\sqrt{98.4425}}{2*4.9}=\frac{-1.55+\sqrt{98.4425}}{9.8} $
| 4x+30=3x-42 | | 9y-36=72 | | 14-x/3=0 | | 10x=0.04 | | 2x-3=2x+1.5-50 | | 0=8z+2 | | 120=11.6xR | | 9x+6x-4=4(4x+16) | | 9-36y=72 | | .015x=10+.1x | | 10+.50x=15+.25 | | 26=12+y | | 4(2-t)-(1-3t)=6 | | 8(3x+7)=32 | | (7x+24)+108=180 | | 1/3+(6+2/3)=(1/3+2/3)+a | | -25=-5+4y | | 4(x-8)=-32+4x | | -(18+x)=2(11-6x) | | 8(-3)(1+3m=) | | 5-x+5x=-3 | | 5x+10x-1=3(5x=5) | | -21=2u-7 | | -2(b-3)=4+18 | | 7x+24+108=180 | | 2/5m-1=0 | | (2v-7)(4+v)=0 | | 3(p+4)=3$ | | 71=x+3 | | Y+(3x+5)=180 | | 5x-(x+3)=1/3(x9+18)-5 | | 95-y=280 |